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1. Introduction

The most fundamental process in glycoscience is the
development of stereocontrolled and efficient methodologies for
forming glycosidic bonds.1–7 This is a consequence of the struc-
tural and functional diversities of glycoconjugates in nature.
Protein- and lipid-bound saccharides play essential roles in many
molecular processes impacting eukaryotic biology and disease.8

Carbohydrates have also shown a tendency to elicit T-in-
dependent immune responses, and the pneumococcal capsular
polysaccharide-protein conjugate vaccines containing a rhamno-
side moiety are being developed to provide better anamnestic
responses and offer better protection to infants.9 Consequently,
studies of the chemistry and biology of carbohydrates and their
conjugates9,10 are growing from day to day. The importance of the
b-rhamnosidic linkages stems from the wide distribution of
rhamnosides in nature as a component in the repeating unit of
antigenic bacterial polysaccharides, oxopolysaccharides, and li-
popolysaccharides;10–20 the most abundant11–29

L-enantiomers
and particularly the b-L-rhamnopyranosyl moieties play impor-
tant roles in the propagation of disease states,11–13 in addition to
their frequent occurrence in natural products.30–39 The synthesis
of the b-rhamnosides is problematic, as in the case of b-manno-
sides. These aspects have attracted our attention and have
prompted us to review the methods of synthesis and of assigning
the configuration of the b-rhamnosides, particularly the stereo-
controlled procedures, which can bypass the problem of their
formation.
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2. 1,2-cis- and 1,2-trans-Rhamnoside

In general, the predominant pyranose conformation of L- or
D-rhamnose is the chair conformation with more equatorial
substituents. Thus, the 1C4 conformations of L-rhamnose and its
glycosides are the most predominant over the 4C1 conformations.
This can be attributed to the presence of one axial hydroxyl group in
the 1C4 conformations, whereas the 4C1 conformations have two
axial hydroxyl groups. The reverse situation holds for D-rhamnose,
where the 4C1 conformation is the more predominant.

The majority of rhamnose derivatives found in nature exist as
glycoconjugates in which the rhamnose is joined with the aglycone
via 1,2-cis (b) or 1,2-trans (a) glycosidic linkages. Such linkages
would generate a more axial substituent at the anomeric center, as
in the a-L-rhamnosides. However, sometimes the chair conforma-
tion with more axial substituents, which is known as an axial-rich
conformation, can result (Fig. 1). This is known as conformational
flip, which can be due to various factors such as the facilitation of
attraction between a positive charge on the aglycone part and
the lone pair of electrons on the ring oxygen, the repulsion of 1,2-
trans-disilyloxy groups when their bulkiness is sufficient to induce
flipping (see Scheme 14, and Ref. 67), and the preference of a C-5
aliphatic substituent to be in an equatorial position.40

3. Assignment of configuration at the anomeric center

The difficulties of forming a 1,2-cis (b) linkage in the O-rham-
nosylation reactions are well known and the rhamnosyl donor
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shows a high selectivity.41 Steric hindrance by the axial 2-O sub-
stituent and the stereoelectronic effect in both L- and D-rhamnose
cause this selectivity. Figure 2 shows the trends of the rhamnosyl
donor toward glycosylation. A positive charge will be created upon
exit of the anomeric leaving group (LG) whereby an ion pair could
be formed and, based on its tightness, the attack will be from dif-
ferent sites. On the other hand, when the substituent on 2-O is an
acyl group, a neighboring-group participation could be formed
whereby the attack of the alcohol would be from the a-site.

The assignment of configuration at the anomeric center of
b- and a-rhamnoside has been mostly based on the value of the 1JCH

coupling at the anomeric position.42 The b-rhamnosides have
values for such coupling in the range 152.3–159.8 Hz, whereas the
a-rhamnosides have 1JCH values in the range 167.2–172.3 Hz. On the
other hand, the 3JH1,H2 coupling constants are not usually suitable
for use, due to their close similarity (3 and <1 or 0 Hz, respectively)
for the b- and a-rhamnoside.43 The 1H NMR assignments of the
b- and a-rhamnopyranoside suggested that both possess the 1C4

conformation, because their H-1 and H-2 coupling constants ruled
out an axial–axial relationship that should exist in the respective
4C1 conformation. In additions their H-4, H-5 coupling constant
demonstrated an axial–axial coupling of the 1C4 conformation
(Fig. 2).

The mass spectra of methyl triacetyl-a-L-rhamnoside (i) and its
b-anomer (ii) differed only in peak intensities and showed char-
acteristic peaks at m/z 303 (M�1), 273 (M�OMe), and 244
(M�AcOH). For the a-anomer i, the peak at m/z 273 was found to be
stronger than that for ii, and this was attributed to the sterically
unfavorable axial methoxy group at C-1, which facilitated its
elimination.44

4. Possible retrosynthetic approaches

The different strategies for elaborating the b-rhamnosidic link-
age are collected in Figure 3 (for the L-series) and Figure 4 (for the
D-series), which show in a retrosynthetic manner the different
donors B–H and J,K required for generating this linkage to give the
b-L-rhamnopyranoside A or the b-D-rhamnopyranoside I, re-
spectively. The 2-O position in an L-rhamnosyl donor will have
a tuning effect on the direction of rhamnosylation by its attachment
to a non-participating group P, which could be benzyl, alkylidene or
carbonate, as presented in B1–B4. The sulfonate group as in C and
the electron-withdrawing group as in D were also precursors. The
anomeric oxygen may be masked in a b-oriented manner to be an
alkylating agent as in E. Reduction of the b-ulosyl bromide and
inversion of the a-rhamnosidic linkage as well as an intramolecular
glycosidation method via different pre-organized linkers as in F–H,
respectively, were also used (Fig. 3).

The b-D-rhamnosidic (6-deoxy-b-D-mannoside) linkages were
reported via modification of b-D-mannosides by deoxygenation and
reductive cleavage of their 4,6-acetals, as represented by J and K,
respectively (Fig. 4). The different strategies for the syntheses of
b-D-mannosides were recently reviewed.1
5. Syntheses of b-rhamnosides

One of the most important challenges in carbohydrate chemis-
try is the formation of 1,2-cis glycosides in the mannosyl and
rhamnosyl series.1–7 This can be viewed as a problem of the twins,
mannose and rhamnose, in that they have a cis relation at the
glycosidic bond and the functional group at C-2, but they are dif-
ferent at C-6. Rhamnose has a 6-deoxy function, which prohibits its
disarming,6 but mannose has a 6-OH that can be disarmed. More-
over, such a deoxy function influences the separation of the ion pair,
which could be formed during the glycoside bond formation, thus
reflecting its effect on the rhamnosylation step. Conformational and
solvent effects in addition to activation of the anomeric center of
the donor play an important role on the stereochemical outcome
from the glycosidation reactions. The synthetic approaches for
forming the linkage in the rhamnose series can be divided into five
methods, within which the intermolecular methods can be sub-
divided into nine methods.
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5.1. Intermolecular glycosidation methods

5.1.1. Role of participating group on O-2
Participation of the 2-acetyloxy group in a glycosyl donor,

during the glycosyl bond formation, is a well-known phenom-
enon and leads usually to the 1,2-trans glycosides, the a-prod-
ucts in rhamnosides (Fig. 2). Thus, when the glycoside synthesis
is supported by neighboring group participation, the a-glyco-
sidic bond has been selectively obtained as a result of trans
opening of the formed acetoxonium ion ring. Consequently, the
method has been extensively used for the syntheses of a-
glycosidically linked oligosaccharides of L-rhamnose, because
they occur in the repeating units of a very wide range of
lipopolysaccharides.5

Reaction of 2,3,4-tri-O-acetyl-a-L-rhamnosyl bromide (1) with
partially protected acceptors 2–4 gave the respective a-linked
disaccharides 5.45 However, rhamnosylation of 2,3,4-tri-O-ben-
zyl-D-rhamnopyranose with a-acetobromo-L-rhamnopyranose (1)
followed by deprotection gave a mixture of b-D-rhamnopyr-
anosyl-a-L-rhamnopyranoside and a-D-rhamnopyranosyl-a-L-
rhamnopyranoside.45 On the other hand, an earlier study of the
reaction of 1 with 6 gave the b-linked disaccharide 7, meth-
anolysis of which gave 846 (Scheme 1).
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5.1.2. Role of 2,3-O-carbonate groups
Modifying or eliminating the neighboring-group effect of the 2-O

substituent led to a preferential formation of the 1,2-cis-rhamno-
sides. The classical methods have used rhamnosyl halides as donors
and insoluble heavy-metal salts as catalytic supports.47 The mech-
anism for this class of reactions has included the formation of
a rhamnosyl carbenium ion-insoluble support ion pair after activa-
tion of the donor. Subsequent attack by the nucleophilic hydroxyl
group then occurs preferentially from the least hindered b-face,
leading to a b-linkage. When the reaction was carried out hetero-
geneously, anomerization of the a-halide to the reactive b-halide
has been limited and the reaction of the a-halide, therefore, pro-
ceeds with inversion. The glycosyl donor, 4-O-acetyl-2,3-O-car-
bonyl-a-L-rhamnosyl bromide (12), was prepared by the reaction of
9 with methyl chloroformate in the presence of triethylamine48 or
triphosgene49 to give the cyclic carbonate 10 in 87 and 97% yield,
respectively. Acetolysis of 10 gave the a,b-L-rhamnopyranose 11 in
90% yield with an a/b ratio of 4:1, from which the a-anomer was
isolated in 60% yield.48 Reaction of 11 with HBr/AcOH afforded the
bromide 12 in 98% yield.48 Alternatively, the bromides 12–1450 were
prepared from the corresponding thiophenyl rhamnosides 18–20
upon reaction with bromine. The latter carbonates were prepared
from diols51 15–17 by the action of phosgene (Scheme 2).
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Historically, the 2,3-O-cyclic carbonate is one of the earliest
protecting groups for the 2- and 3-vicinal hydroxyl functions in the
mannosyl and rhamnosyl donors to direct the glycosidic bond to-
ward the b-orientation, with high diastereoselectivity in the pres-
ence of an insoluble silver salt.1,52 When a heterogenous insoluble
silver oxide promoter was used, the 4-O-acetyl-2,3-O-carbonyl-a-L-
rhamnosyl bromide 12 led to a b-selective coupling to give the
3β-cholestanol
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disaccharides 21.48,49 3-O-(b-L-Rhamnosyl)-b-D-rhamnoside was
also synthesized.48

Similarly, the coupling of rhamnosyl bromides 12–14 with 3b-
cholestanol in the presence of silver oxide gave the respective
b-rhamnosides 22–24. On the other hand, when the same coupling
of 13 was carried out in the presence of silver triflate/tri-tert-
butylpyrimidine (TTBP), a homogeneous soluble promoter system,
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the b-rhamnoside 23 was formed in only 10% yield, whereas the
a-anomer 25 was formed in 56% yield. Deprotection of the acetyl
and carbonate groups by NaOMe and subsequent de-iso-
propylidenation, by careful treatment with a cation exchange res-
in (Hþ) in methanol, of the furanoide derivatives of 21 gave an
apiose-containing disaccharide fragment of rhamnogalacturonan-
II,49 b-L-Rhap-(1/30)-b-Apif-OMe (92%), and b-L-Rhap-(1/5)-b-D-
Ribf-OMe (68%) (Scheme 3).

In a homogeneous solution, the carbonate is highly a-selective.
This is due to the half-chair conformation adopted by triflate do-
nors, upon activation, that reduced the energy gap between the
oxacarbenium ion conformation and the covalent triflate, thereby
encouraging the a-face-selective process.50 Thus, Crich deduced
that the 2,3-O-carbonate is highly a-directing under his coupling
conditions, whereas the b-selectivity was facilitated in the presence
of a silver oxide promoter.50 The a-face may be shielded by the
absorption of the bromide on the promoter surface. Thus, the
phenyl thiorhamnosides 19 and 20 were coupled with 29 under
Crich conditions to give, selectively, the respective a-glycosides 30
and 31 in high yield; the expected selectivity53 based on the finding
that the b-directing influence of the 4,6-O-benzylidene group to
provide b-mannosides is completely over-ridden by a 2,3-carbon-
ate in the donor.54 A similar coupling of the thiorhamnosides 18–20
with b-cholestanol gave the corresponding a-rhamnosides 26, 25,
and 27, respectively. In addition, 28 gave the a-rhamnosyl de-
rivative 33 upon coupling with 32 in the presence of 1-benzene-
sulfinylpiperidine (BSP) and Tf2O (Scheme 4).

5.1.3. Role of 3,4-O-carbonate groups
When a cyclic carbonate protecting group has been located at

the 3,4-O-position of a rhamnosyl donor, a b-directing effect was
found in both homogenous and heterogenous conditions. This en-
forcement of b-glycosylations has been attributed to the
O
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combination of the strongly electron-withdrawing ability of the
cyclic carbonate, which destabilizes the positive charge on C-1
derived by expulsion of the anomeric leaving group and its cyclic
nature, which prevents neighboring-group participation.50 Thus,
the donors 37 and 38 were prepared50 from the thiophenyl
rhamnoside 34 by reaction with diacetyl in the presence of tri-
methyl orthoformate and camphorsulfonic acid (CSA) followed by
benzylation to give 35, the acid treatment of which gave 36 that,
upon reaction with phosgene, gave 37. The latter compound was
converted into 38 upon reaction with bromine (Scheme 5).

Coupling of glucose-6-OH as an acceptor with phenyl thio-
rhamnoside 37, using a 1-benzenesulfinylpiperidine, 2,4,6-tri-tert-
butylpyrimidine, and triflic anhydride (BSP/TTBP/Tf2O)-mediated
system, exhibited a significant b-selectivity to give 39 in 77% yield
with a b/a ratio of 4.5:1; the anomeric selectivity was reduced, due
to the less reactive nature of the acceptor. On the other hand,
coupling of 37 to a tertiary alcohol, adamantanol, formed the
b-anomer as the only detected coupling product in 56% yield50

(Scheme 6). The use of 5% acetonitrile or propionitrile
in dichloromethane increased the b-selectivity of a number of
L-rhamnopyranosylations under the above reaction conditions.50

5.1.4. Role of 2,3- and 3,4-O-alkylidene groups
Comparable results to those shown by using the 2,3-O-carbon-

ate group for the formation of the a-rhamnosidic linkage were also
found upon using the 2,3-O-isopropylidene derivative 40 with ac-
ceptor 32, whereby 41 was the only found anomer.55 Similarly, the
reaction of 3,4-O-isopropylidene acetal donor 42 with the 4-OH
glucoside acceptor 43 was found to be completely a-selective,50 to
give 44 (Scheme 7). This led to the conclusion that the b-selectivity
of the 3,4-O-carbonate cannot be due to a conformational effect
arising from the cyclic nature of the protecting group.
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The 2,3-O-cyclohexylidene moiety has also been used as a non-
participating protecting group. Thus, the donor cyclohexylidene
rhamnosyl bromide 47 was prepared by acetalation of methyl a-L-
rhamnopyranoside (45) with 1-ethoxycyclohexene followed by
benzoylation56 to give 46 that, upon bromination, afforded 47. Re-
action of 47 with partially protected acceptors under standard
Koenigs-Knorr conditions using silver carbonate and molecular
sieves (4 Å) in CH2Cl2 afforded, stereoselectively, the b-glycosides
48a–c, whereas a mixture of the ab anomers of 48d was obtained.
The lower ratio of the b-rhamnoside in 48d has been attributed to
the low reactivity of the 4-OH group in the respective acceptor.56
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The removal of the protecting groups can be readily accomplished;
TFA was used to hydrolyze the acetal group (Scheme 8).

5.1.5. Role of benzyl groups on O-2
Intermolecular glycosidation of 2,3,4-tri-O-benzyl-a-L-rhamno-

pyranosyl bromide 50, synthesized from the corresponding thio-
glycoside 49, with saccharides containing reactive hydroxyl groups
in the presence of silver silicate as a catalyst gave the b-glycosidi-
cally linked disaccharides 51a–g with good selectivity. The solvent
has an important effect on the anomerization during the coupling
reaction. When dichloromethane was used as the solvent, the ac-
ceptors (ROH) with R¼a, b, c (R1¼Ac), and d gave only the b-linked
disaccharides, whereas, in toluene, a mixture of the a and b glyco-
sides resulted from the acceptors with R¼c and e.57 On the other
hand, coupling of 50 with the anhydro-sugar acceptor ROH (R¼f) in
CH2Cl2 at room temperature afforded the b- and a-rhamnoside
disaccharides in 43 and 36% yield, respectively.58,59 On coupling of
ethyl 2,3,4-tri-O-benzyl-1-thio-a-L-rhamnopyranoside (49) with
the acceptor ROH (R¼g) in the presence of methyl triflate in
dichloromethane, the b-linked disaccharide 51g was obtained, from
which the benzyl and benzylidene protecting groups were removed
to afford the respective methyl glycoside22 (Scheme 9).

Among the studies on cardiac glycosides, donors with non-
participating benzyl groups in conjunction with 3,5-dinitro-pyrid-
2-yl or trichloroacetimidate as leaving groups at the anomeric
center, as in 53 and 54, were prepared from 2,3,4-tri-O-benzyl-L-
rhamnose 52. Coupling of 53 or 54 with digitoxigenin in the pres-
ence of BF3/Et2O gave regioselectively the b-rhamnoside 51
(Scheme 10). The deprotected b-anomer showed good hog kidney
Naþ, Kþ-dependent ATPase inhibition (IC50 4.79�10�9 M).60 The 50-
Me and 40-OH groups appear to have a predominant role in binding
to the Naþ, Kþ-ATPase receptor. The relative configuration of the OH
group also contributes to the binding.60

The dehydrative glycosidation of 2,3,4-tri-O-benzyl-L-rhamnose
52 with alcohols, in the presence of the heteropolyacid H4SiW12O40,
gave the corresponding O-glycosides 51 that mainly contained the
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a-anomers with very minor amounts of the b-anomers61 (Scheme
11). The heteropolyacid was considered to function as an activating
agent of the anomeric hydroxyl group of the glycosyl donor and
a dehydrating agent for the resulting water from the glycosidation.
The ratio of the b-anomer and the yield changed by altering the
heteropolyacid, but this cannot be considered as a suitable method
for the synthesis of b-rhamnosides.

The rhamnosyl bromide 57, having non-participating groups on
O-2 and O-3, whereas the O-4 has a temporary acetyl group, was
also used as a donor in the presence of silver silicate. It was syn-
thesized in 35% yield from the 4-O-acetyl derivative 56, prepared
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from allyl 2,3-O-isopropylidene-a-L-rhamnopyranoside 55. Cou-
pling of the rhamnosyl bromide 57 with mono- and disaccharide
acceptors gave an a,b-mixture of the respective oligosaccharides
58a,b. Further coupling of 58a with a disaccharide-2,4-diol accep-
tor gave a mixture of the 4-O-regioisomer 59 in 28% yield and the 2-
O-isomer 60 in 15% yield (Scheme 12). Deprotection of 58a gave
a single repeating unit of the type VIII group B Streptococcus (GBS)
capsular polysaccharide required for developing vaccines for GBS
infections.62

Rhamnosyl derivatives having non-participating 2,3-di-O-ben-
zyl groups and a 4-O-benzyl or a 4-O-benzoyl group in conjunction
with a dimethylphosphinothioate group on O-1, have been used to
synthesize b-rhamnosides. Thus, the donors 62 and 63 were pre-
pared by the reaction of the corresponding rhamnose derivatives
52 and 61 with dimethylphosphinothioyl chloride in the presence
of butyllithium in tetrahydrofuran.63,64 Coupling of 62 and 63 with
several alcohols in the presence of iodine and catalytic amount of
triphenylmethyl perchlorate, as an activator, in benzene gave the
b-rhamnopyranosides 51 and 65, respectively, in moderate yields.
The presence of a 4-O-benzoyl group in 63 led to the b-linked di-
saccharides in higher selectivity than that from the donor 62 with
a 4-O-benzyl group. This has been attributed to the formation of
the 1,4-O-benzylidene-type cation intermediate 64 (Scheme 13).
The catalyst and its ratio with respect to the reactants as well as the
solvent played a role in the stereoselectivity.

When tert-butyldimethylsilyl (TBS) and tert-butyldiphenylsilyl
(TPS) groups were introduced on the 3-OH and 4-OH groups, re-
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group on 2-OH, a flipping of the natural ring conformation oc-
curred, whereby the 4C1 conformation was adopted.65,66 Thus, the
a-selectivity of the general rhamnosylation reactions has been
changed, leading to an increase in the b-rhamnosides. The glycosyl
donors 67 and 68 were synthesized67 from the corresponding allyl
rhamnoside 66 by treatment with PhSTMS and ZnI2 to give 67
followed by treatment with diethylaminosulfur trifluoride (DAST)
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and NBS to give 68. The trichloroacetimidate 71 was prepared from
70. Rhamnosylation of R-OH carried out with phenyl 1-thio-
rhamnoside 67 or rhamnosyl fluoride 68, having a 4C1 conforma-
tion, in the presence of N-bromosuccinimide gave 69.66 Similarly,
a b-selective rhamnosylation was also accomplished by using the
trichloroacetimidate 7165 (Scheme 14). Different acid catalysts were
used on the rhamnosylation of 71 with cyclohexylmethanol, but
those, which gave higher yields and/or higher b-selectivities were
boron trifluoride etherate (BF3/Et2O), triethylsilyl triflate (TESOTf),
tert-butyldimethylsilyl triflate (TBSOTf), and tri-iso-propylsilyl tri-
flate (TIPSOTf).

A rhamnosyl bromide 72 with an allyl group on 2-O has been
used in the rhamnosylation of benzyl rhamnoside 73 under catal-
ysis by silver silicate in CH2Cl2 to afford mainly the b-rhamnobio-
side derivative 74 (73%). This compound was O-deacetylated and
coupled with 2,3,4-tri-O-benzyl-a-L-rhamnosyl bromide 50 to af-
ford 75 (72%) with b-glycosidic linkages of all monosaccharide
units.26 Similarly, the rhamnotrioside derivative 78 was prepared
by using benzyl 3,4-di-O-benzyl-a-L-rhamnopyranoside 76 as an
acceptor at O-2, the reaction of which with 72 in the presence of
silver silicate gave only the b-glycosidically linked disaccharide 77,
deacetylation of which and further reaction with 50 gave 78 in 70%
yield. Deblocking of 78 gave the respective trisaccharide,5,68 a re-
peating unit of Shigella flexneri serotype 6 (Scheme 15).

A surprising ring fission of the rhamnopyranose ring in 79 to the
rhamnofuranosyl halide 80 has taken place by acetolysis of the
O-tert-butyl residue of the rhamnopyranoside 79 with trifluoro-
acetic acid/acetic anhydride followed by treatment with titanium
tetrabromide. The disaccharide 80 can be considered as the kinetic
product of dealkylation of the 1-OH group in the rhamnopyrano-
side unit, with spontaneous ring scission to the unusual furanosyl
form, followed by acetolysis and then bromination. Stereoselective
coupling of the glycosyl donor 80 with a 3-deoxy-D-lyxo-heptulo-
saric acid acceptor 81 in the presence of mercuric cyanide afforded
exclusively the b-rhamnofuranoside 82 in high yield. The
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unexpected formation of the interglycosidic b-linkage was con-
firmed from an X-ray crystal structure determination of the cor-
responding acetate 8369 (Scheme 16).

5.1.6. Role of sulfonyl groups on O-2
The presence of a sulfonyl group on 2-O of rhamnosyl or man-

nosyl donors has played an important role in directing the formed
glycosidic bond toward a b-configuration.1,6,70 This was explained
to be a result of the interaction of opposing dipoles of strongly
electronegative non-participating substituents on O-2 and a highly
reactive electronegative leaving group on C-1. Such a situation
could direct the influence of the 2-O-sulfonyl group to stabilize the
a-mannosyl1,70–72 and a-rhamnosyl sulfonate esters and lead to
glycosylation from the b-site. Thus, treatment of 1-O-tosyl de-
rivative 86 (X¼Ts) with methanol or cyclohexanol afforded mainly
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the b-anomers, along with small amounts of the a-anomers. The
reaction was more stereoselective and also faster when the 1-O-
(2,2,2-trifluoroethylsulfonyl) (tresyl) derivative 86 (X¼CF3CH2SO2)
was used instead of the 1-O-tosyl derivative.70 The tresyl donor 86
was prepared by the reaction of rhamnosyl chloride 85 with silver
2,2,2-trifluoroethanesulfonate in acetonitrile. The chloride 85
was prepared by the reaction of 3,4-di-O-benzyl rhamnose 84
with mesyl chloride. The syntheses of disaccharides containing
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b-L-rhamnosidic bonds linked at the primary and secondary posi-
tions of the aglycons were carried out with the tresyl derivative 86
in acetonitrile at room temperature for 48 h to afford a mixture of
a/b anomers of disaccharides 87a–g. The a anomers in the case of
aglycons 87 (R¼d and e) were formed in a very small proportion
and could not be isolated in the pure state70 (Scheme 17).

The trisaccharide repeating unit of the O-antigen of the lipo-
polysaccharide from Xanthomonas campestris pv.campestris 8004,
a pathogen of cruciferous crops, has a b-D-rhamnoside linkage. Its
synthesis has been accomplished by the selective allylation of 88
to give 89, benzylsulfonylation of which gave 90, which was
hydrolyzed and converted into the donors 91 and 92. Sequential
b-D-rhamnosylation of 93 with a 2-O-benzylsulfonyl-N-phenyl-
trifluoroacetimidate donor 92 gave 94 that, upon debenzylsulfo-
nylation of the b-anomer, gave 95, coupling of which with
a D-Fucp3NAc thioglycoside donor 96 gave 97 that was deprotected
to give the target trisaccharide73 (Scheme 18).

The ability of a number of 2-O-sulfonates to promote the b-
glycosylation of 3b-cholestanol has been studied by the Crich
group.74 The b-thiorhamnosides rather than their a-analogues
were selected as precursors for the donors because of the instability
of the 2-O-sulfonates of the a-thioglycosides. Thus, 34 was
converted into the 4-O-benzyl derivative 101, which, upon
OBnO
RO

OMe

OH

O

90

O

BzO

BnO
O

O
AcHN

OAc

OBnO
OS

O

OBnO
HO

OMe

OBn

BnO
O

O
OBnO

OR1

93

NaNH2
DMF

BnSO2Cl
Py

88 R = H  i. Bu2SnO
    PhH, MeOH
ii. TBSB, AllBr

94 R1 = SO2Bn

95 R1 = H 

89 R =

TMSOTf
CH2Cl2

58%
99%

Scheme
de-isopropylidenation and selective benzylation, gave 102 that
subsequently sulfonylated to give the respective 2-O-sulfonate 103
(R¼p-C6H4–Br, p-C6H4–F, p-C6H4–CN, p-C6H4–CF3, CH2CF3). Their
coupling with 3b-cholestanol under the Crich protocol for activa-
tion of the donor indicated that the optimal donor was the p-tri-
fluoromethylbenzenesulfonate, which gave the product in 75%
yield with a b/a ratio of 5.5:1. A further increase in the b-selectivity
could be obtained by using the 4-O-benzoyl donor 98, which was
prepared by regioselective 3-O monobenzylation of 34 through
treatment with dibutyltin oxide and then benzyl bromide, followed
by sulfonylation at O-2 and then benzoylation at O-4 (Scheme 19).
The o-trifluoromethylbenzenesulfonate 98 rather than the b-iso-
mer was selected as a donor, because of the instability of the
respective para-substituted isomer. Activation of the 2-O-sulfonyl-
protected rhamnosyl thioglycoside 98 with a combination of
1-benzenesulfinylpiperidine (BSP) and triflic anhydride in the
presence of 2,4,6-tri-tert-butylpyrimidine (TTBP), followed by ad-
dition of the acceptor alcohols, yielded the respective mixture of
anomeric rhamnopyranoside disaccharides 99. Reaction of their b-
anomers with sodium amalgam afforded their corresponding
desulfonylated and debenzoylated glycosides 100. b-Rhamnosyla-
tion with donors having 4-O-benzoyl protecting groups revealed
a significant increase in the selectivity; the more highly disarmed
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system proceeded well with primary and more reactive secondary
acceptors, while, with glucose 4-OH acceptor, which has a less re-
active secondary hydroxyl group, the b-selectivity was decreased. It
was also reported that b-rhamnosylation with a tertiary alcohol,
1-adamantanol, was extremely b-selective.74
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5.1.7. Variable electron-withdrawing groups at O-2
The potential of non-participating, electron-withdrawing

groups at O-2, other than the sulfonate groups, as b-directing
groups in the rhamnose series has been examined75 and the results
are shown in Scheme 20.

5.1.8. Ulosyl bromide approach
This is an indirect approach for the b-L-rhamnosyl donors.76–79

The ulosyl bromides76 107–109 can be accessed from the readily
available 2-acyloxy-L-rhamnals 104–106. Glycosidation of ulosyl
bromides was found to have a high potential to form the b-linkages
under standard Koenigs-Knorr conditions. No a-anomeric products
were detectable in the reaction mixture and the b-ulosides 110–112
were isolated in 80–90% yields.77,78 The selectivities obtained in the
carbonyl reductions of glycosiduloses 110–112 (R¼i-Pr) were found
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to be dependent upon the nature of the 3-O-protection, as in the
case of b-mannosyl donors.79 Thus, reduction of uloside 110 by
NaBH4 gave a 3:1 mixture of the L-rhamno 113 and 6-deoxy-L-gluco
epimer 116, whereas reduction of 3-O-benzylated compound 111 or
112 gave essentially b-L-rhamnosides 114 and 115, respectively77

(Scheme 21).

5.1.9. Anomeric O-alkylation via locked anomers
Kovac found that 1,2-O-cis-stannylene acetals of sugars are

powerful nucleophiles capable of displacing good leaving groups in
carbohydrates via an SN2 mechanism and also make the protection
of hydroxyl groups in the glycosyl donor unnecessary. Thus, gly-
cosylation of the 1,2-O-cis-stannylene acetal of L-rhamnose (117)
with the primary triflate 118 in DMF at 25 �C gave the b-L-rham-
nopyranoside 119 in about 50% yield, in addition to the formation of
120 in about 25% yield, as a result of the reaction of 118 with DMF.
When the same reaction was performed in the presence of CsF and
a high proportion of 117 at low temperature, the yield of the di-
saccharide 119 increased to 88%. On the other hand, the reaction of
117 with less reactive secondary triflate 121, at 25 �C for 2.5 h, gave
the disaccharide 122 in 78% yield with complete inversion of
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configuration in the electrophile 121; no 4-O-formylated derivative
was isolated80,81 (Scheme 22).
5.2. Intramolecular aglycon delivery

In order to achieve such intramolecular glycosidation processes,
the donor and the acceptor have to be linked by a spacer, as
reported by Ziegler.82,83 Thus, ethyl 3,4-di-O-benzyl-1-thio-a-L-
rhamnopyranoside was treated with succinic anhydride to give the
‘spacer-modified’ glycosyl donor 123 that, upon regioselective
condensation with partially benzoylated galactoside 124, afforded
the pre-arranged spacer disaccharide 125, intramolecular (1/4)
glycosidation of which using NIS/TMSOTf gave a mixture of b and
a cyclized anomers 126 and 127 in about 31% yield. The succinoyl
group of 126 can be cleaved and the product was benzoylated to
give the b-rhamnoside 12882 (Scheme 23).

Similarly, the glycosyl donors 131 were prepared from the
respective 2-O-carboxyalkanoyl or -aroyl derivatives of 3,4-diben-
zyl-1-thio-a-L-rhamnosides 129 by reaction with benzyl 2-O-ben-
zoyl-4,6-O-benzylidene-a-D-glucopyranoside (130) followed by
regioselective reduction of the benzylidene ring. Cyclization of
the pre-arranged glycosides 131 afforded the 2,30-bridged a and
b-(1/4)-linked disaccharides 132 upon intramolecular glycosyla-
tion under various conditions. An excellent b-selectivity of the
intramolecular glycosidation resulted when N-iodosuccinimide in
acetonitrile was used as an activator82 and this was enhanced with
trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst at
low temperature. The 1H NMR spectrum of the malonyl-bridged
disaccharides 132 b (X¼CH2) showed the presence of a 3:1 mixture
of two products, which could not be separated by chromatography
and were postulated as a mixture of conformers. The anomeric
selectivity of the glycosylation was strongly influenced by the na-
ture of the alkanoyl and aroyl bridges and its position at the
rhamnosyl residue, in addition to the solvent used for the coupling.
It was found that compound 131 having a more rigid bridge
(malonyl and phthaloyl groups) gave significantly lower portions of
the desired b-coupled disaccharides, while the best result was
obtained with succinoyl pre-arranged glycosides. The succinoyl
pre-arranged glycoside 131 having a thiophenyl group afforded the
respective cyclic disaccharide 132 (90%) with an excellent b-selec-
tivity (b/a¼84:16).

Compound 132 b [X¼(CH2)2] was transformed into the di-
saccharide 133 by deacylation followed by rebenzoylation.83 Al-
though an a-directing participating acyl group was present at
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position-2 of the rhamnosyl residue, the pre-arrangement of the
two glycosides forced the glycosylation toward a 1,2-cis selective
coupling.82 A lower yield of the conversion of the pre-arranged
glycoside 125 to 126 and 127 (Scheme 23) was observed, which was
attributed to the less-favored larger ring formed, compared to the
respective 2:30-bridged (1/4)-linked disaccharide analogue 132
(Scheme 24).
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5.3. Reductive cleavage of 4,6-acetals of mannopyranosides

Regioselective reductive radical cleavage of the 4,6-acetal 135 by
tributyltin hydride and 2,20-azobisisobutyronitrile (AIBN) in tolu-
ene at reflux gave the b-D-rhamnosides 137, rather than the alter-
native 6-O-benzoyl-4-deoxy-type products, in addition to the
byproducts, 4,6-O-benzylidene-protected b-mannosides 136, via
Bu3SnH
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intermediates A, B, and C.84,85 The starting compound 135 was
prepared by the action of N-benzenesulfinylpiperidine (BSP), 2,4,6-
tri-tert-butylpyrimidine (TTBP), and triflic anhydride on the cor-
responding phenyl a-thioglycoside of 134 at �60 �C in CH2Cl2. The
latter compound was prepared from 138 by conversion into 139
and then into 134 (Scheme 25).

Using the above stereoselective glycosylation radical fragmen-
tation route, the synthesis of trisaccharide 142 was achieved from
the diacetal 141, in which both the b-D and a-D-rhamnopyranosyl
units were obtained in a single step in 54% isolated yield via
a double radical fragmentation of the modified benzylidene
acetals.85 The diacetal 141 was prepared from the reaction of the
3-O-unprotected rhamnosyl acceptor (ROH) with the activated
thioglycoside 140, followed by deacetylation with ethylenediamine
(Scheme 26).

5.4. Modification of b-mannosides

Since D-rhamnosides are 6-deoxy-D-mannosides, their synthesis
can be expected to proceed via deoxygenation at the 6-position of
the mannosides. Thus, selective tosylation of b-mannobiosides 143
and 147 at the 6-positions yielded the ditosylates 144 and 148 in 62
and 67% yields, respectively, which, in turn, gave the corresponding
iodo derivatives 145 and 149 in 80 and 86% yields. Subsequent
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reduction of 145 and 149 using nickel chloride and sodium boro-
hydride gave b-D-rhamnobioside acetate 146 and the 2-deoxy de-
rivative 150,86,87 respectively (Scheme 27).

5.5. Inversion of a-rhamnosidic linkages

Inversions of a- to b-rhamnoside have been described to take
place under photochemical conditions, in addition to fragmentation
at the anomeric radicals that resulted in the formation of ring-opened
products Thus, addition of tributyltin hydride to the mixed acetal 151,
readily prepared from 153 and 1,2-dibromo-2-methoxypropane at
reflux in benzene, gave the b-rhamnosides 152 and the a-rhamno-
sides 153, in addition to the fragmentation products 154. Unexpected
byproducts, a-rhamnosides 155 and 156, were detected in 13 and 15%
yields and resulted from attack of the stannyl radical on the carbonyl
oxygen of the benzoyl ester in the substrate at C-4, followed by
fragmentation and 1,4-hydrogen atom abstraction, respectively88

(Scheme 28).

6. Conclusions

The tuning of substituents and the activation processes of the
rhamnosyl donors are essential requirements for the orientation of
the rhamnosidic bond during the glycosidation reactions. The
syntheses of b(1,2-cis)-rhamnosides require the absence of
a neighboring-group effect and the projection of the leaving group
in a trans-orientation (a) with respect to O-2 or the formation of an
intimate ion pair, upon activation, to be substituted by the nucle-
ophilic oxygen acceptor from the least hindered b-face to give the
b-linkage. The heterogenous activation of the donor limited the
anomerization of the leaving group in the donor. Although the 2,3-
O-carbonate function has a b-orienting influence when the leaving
group on C-1 is a bromine atom and the promoter is silver oxide,
the situation has been reversed to be highly a-selective upon
changing the leaving group to triflate in homogenous solution. This
has been attributed to the adoption of the 1-O-triflate-formed do-
nor of a half-chair conformation, in which the energy gap between
the carbenium ion and the covalently bound triflate can allow the
a-face for coupling. The a-face is shielded by the adsorption of
the leaving group on the surface of the promoter. The 3,4-O-car-
bonate-group influence on the b-selectivity has been due to
a conformational effect. The presence of a bulky silyl group on the
3-OH and 4-OH groups as well as a non-participating group on the
2-OH moiety gave rise to a flipping of the conformation to the 4C1

conformer, leading to an increase of the b-rhamnosides. The pres-
ence of a sulfonyl group on 2-OH led to a stabilization of the re-
active leaving group on C-1 in the a-position, thus providing
a glycosylation from the b-site. Although there are valuable
methods for the synthesis of b-rhamnosides, there is still a need for
a generalized method for achieving such linkages.
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